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MotivationMotivation

Partial modelsPartial models
Compact sizeCompact size
Focused (limited) knowledge about the system Focused (limited) knowledge about the system 
dynamicsdynamics
Easier to learnEasier to learn
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OutlineOutline

Planning frameworkPlanning framework
Partial modelPartial model
StateState--variable hierarchyvariable hierarchy
Partial model planning (PMP)Partial model planning (PMP)

Learning partial modelsLearning partial models
Empirical evaluationEmpirical evaluation
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Planning FrameworkPlanning Framework

Deterministic factored state spaceDeterministic factored state space
SS = Total state space = = Total state space = DD((vv11)) ×× …… ×× DD((vvnn))

Partial action modelPartial action model
Set of rules = {Set of rules = {rr = = opop : : prepre →→ postpost}}
Relevant variables Relevant variables ρρ((rr) = variables that are checked ) = variables that are checked 
= variables that are changed= variables that are changed
ExampleExample
rr = North: * 0 * = North: * 0 * →→ * 1 ** 1 *

ρρ((rr) = {) = {vv22}}
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Partial ModelPartial Model

Given ordering Given ordering ΩΩ on variables (on variables (ii < < jj⇔⇔ vvii ≺≺ vvjj))
Primary variable Primary variable ψψ(r, (r, ΩΩ) = first variable in ) = first variable in ρρ((rr))
Secondary variables = Secondary variables = ρρ((rr) ) –– ψψ((rr, , ΩΩ))
rr..opop has no effect on any variable preceding has no effect on any variable preceding ψψ((rr, , ΩΩ))

Projection of a rule Projection of a rule rr((vv) = () = (prepre[[vv], ], postpost[[vv])])

Component graph (CG) for a variableComponent graph (CG) for a variable
GGvv = (= (DD((vv)), {, {rr((vv)) : : vv = = ψψ((rr, , ΩΩ)}))})

Partial model (PM) = {(Partial model (PM) = {(GGvv, , RRvv)})}
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Hierarchy of variablesHierarchy of variables

The ordering is a The ordering is a ““hierarchyhierarchy”” over variablesover variables

v1

v2 v3

v4

v5

v6
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DefinitionsDefinitions

A partial model is A partial model is adequateadequate iffiff there exists an there exists an 
ordering such that all ordering such that all CGsCGs are strongly are strongly 
connectedconnected
A domain is A domain is serializableserializable iffiff there exists an there exists an 
ordering such every variable can be set to its ordering such every variable can be set to its 
desired value without affecting precursorsdesired value without affecting precursors
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Statement of Partial Model PlanningStatement of Partial Model Planning

If a domain has an adequate partial model thenIf a domain has an adequate partial model then
S is strongly connected via the operators in the PMS is strongly connected via the operators in the PM
The domain is The domain is serializableserializable

This follows because every CGThis follows because every CG
Is strongly connectedIs strongly connected
Only affects the associated variable and successorsOnly affects the associated variable and successors
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Taxi DomainTaxi Domain

1 2

34

Actions:Actions:
North, South, East, WestNorth, South, East, West
PickupPickup
DropoffDropoff

taxi.x

pass.loc

taxi.y
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Taxi Domain Taxi Domain CGsCGs

0 1 2 3 4

taxi.x, taxi.y

pass.loc 0

T3 1

2



11

Taxi Domain Taxi Domain CGsCGs

0 1 2 3 4

taxi.x
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Taxi Domain Taxi Domain CGsCGs

0 1

East: 0 2 * → 1 2 * 
East: 0 3 * → 1 3 * 
East: 0 4 * → 1 4 *

West: 1 2 * → 0 2 * 
West: 1 3 * → 0 3 * 
West: 1 4 * → 0 4 *

taxi.x
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Partial Model PlanningPartial Model Planning

Start state: 3 0 3 Goal state: * * 1
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Putdown: 4 4 T  → 4 4 1

Pickup: 0 0 3 → 0 0 T

Partial Model PlanningPartial Model Planning

0

T3 1

2

Putdown: 0 0 T → 0 0 3

Pickup: 4 4 1 → 0 0 T

Start state: 3 0 3 Goal state: * * 1
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Partial Model PlanningPartial Model Planning

Start state: 3 0 * Goal state: 0 * *

0 1 2 3 4

taxi.x
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Planning AlgorithmPlanning Algorithm

Start state: * 0 * Goal state: * 2 *

0 1 2 3 4

taxi.y
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Notions Of OptimalityNotions Of Optimality

Parameters:Parameters:
DD = = maxmaxvv DD((vv))

bb = = maxmaxrr ||ρρ((rr))| | –– 11
dd = depth of variable hierarchy= depth of variable hierarchy
kk = max number of rules on an edge= max number of rules on an edge

Global optimality:  Global optimality:  OO((DDnn))

Hierarchical optimality:  Hierarchical optimality:  OO((((DbkDbk))nn))
Pick best rule to minimize pre and post costPick best rule to minimize pre and post cost

Recursive optimality:  Recursive optimality:  OO((((DbkDbk))dd))
Pick best rule to minimize pre costPick best rule to minimize pre cost

Agnostic(?) optimality:  Agnostic(?) optimality:  OO((((DbDb))dd))
Pick an arbitrary rule on the shortest pathPick an arbitrary rule on the shortest path
Assumes all pre costs are equivalentAssumes all pre costs are equivalent
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Learning Partial ModelsLearning Partial Models

Induce
compressed

rule set

Induce component graphs
(and variable ordering)

{Gv}

T = {(s,a,r,s’)}



19

Inducing Compressed Rule SetInducing Compressed Rule Set

R R ←← ∅∅
While While TT

Pick a transition Pick a transition ((ss,,aa,,rr,,ss’’)) such that such that ss ≠≠ ss’’
Let Let rr = = aa : : ss →→ ss’’
Initialize Initialize ρρ = {= {vv : : rr..prepre[[vv] ] ≠≠ rr..postpost[[vv]]}}
ρρ = = LearnContext({LearnContext({((ss,,aa,,rr,,ss’’))}, }, rr, , ρρ))
For  For  vv ∉∉ ρρ, , rr..prepre[[vv] ] ←← rr..postpost[[vv]] ←← **
RR←← RR ∪∪ {r}{r}
TT←← TT –– {{((ss,,aa,,rr,,ss’’)) consistent with consistent with rr}}
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Inducing Compressed Rule SetInducing Compressed Rule Set

0 2 2
East
1 2 2
West
0 2 2
South
0 1 2
West
0 1 2
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Inducing Compressed Rule SetInducing Compressed Rule Set

0 2 2
East
1 2 2
West
0 2 2
South
0 1 2
West
0 1 2

r = East: 0 * * → 1 * *
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Inducing Compressed Rule SetInducing Compressed Rule Set

0 2 2
East
1 2 2
West
0 2 2
South
0 1 2
East
0 1 2

r = East: 0 * * → 1 * *
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Inducing Compressed Rule SetInducing Compressed Rule Set

0 2 2
East
1 2 2
West
0 2 2
South
0 1 2
East
0 1 2

r = East: 0 2 * → 1 2 *
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Inducing Compressed Rule SetInducing Compressed Rule Set

1 2 2
West
0 2 2
South
0 1 2
East
0 1 2

r = East: 0 2 * → 1 2 *
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Inducing Component GraphsInducing Component Graphs

While While ΩΩ does not contain all variablesdoes not contain all variables
For For rr ∈∈ RR
vv ∈∈ ρρ((rr) ) –– {{uu : : uu in in ΩΩ}  // Assuming a single variable}  // Assuming a single variable
Insert edge Insert edge ((rr..prepre[[vv], ], rr..postpost[[vv])]) in in GGvv

For For vv : : vv ∉∉ ΩΩ ∧∧ GGvv
If If GGvv is strongly connected, append is strongly connected, append vv to to ΩΩ

Delete all malformed component graphsDelete all malformed component graphs
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Empirical EvaluationEmpirical Evaluation

Compare against VISA (Compare against VISA (JonssonJonsson & & BartoBarto, 06), 06)
Learns an exitLearns an exit--option hierarchy from fully specified option hierarchy from fully specified 
DBN modelsDBN models
Does intraDoes intra--option Q learningoption Q learning

DomainsDomains
Regular Taxi domainRegular Taxi domain
Modified Taxi domainModified Taxi domain

Pickup when Pickup when passpass..locloc = T causes = T causes taxitaxi..yy++++



27

Empirical Evaluation: Regular TaxiEmpirical Evaluation: Regular Taxi
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Empirical Evaluation: Modified TaxiEmpirical Evaluation: Modified Taxi
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ResultsResults

PMP learns the appropriate variable ordering PMP learns the appropriate variable ordering 
and an adequate model in ~8 episodesand an adequate model in ~8 episodes
Recursive optimality coincides with global Recursive optimality coincides with global 
optimality in the Taxi domainoptimality in the Taxi domain
VISA induces tight structure in Regular Taxi but VISA induces tight structure in Regular Taxi but 
only the shallowest hierarchy for Modified Taxionly the shallowest hierarchy for Modified Taxi

Entire causal graph is strongly connectedEntire causal graph is strongly connected

PMPPMP’’ss partial model stays unchangedpartial model stays unchanged
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ConclusionConclusion

Partial models can be learned from random Partial models can be learned from random 
trajectoriestrajectories
PMP can be made exponential in PMP can be made exponential in dd even when even when 
VISA and factored planning are exponential in VISA and factored planning are exponential in nn
Future workFuture work

Bounding Bounding PMPPMP’’ss plan length vs. optimalplan length vs. optimal
Generalizing factors to sets of variablesGeneralizing factors to sets of variables
Easing the requirement of strong connectednessEasing the requirement of strong connectedness


