Learning Partial Models for Planning

Neville Mehta Prasad Tadepalli

School of Electrical Engineering and Computer Science
Oregon State University

Motivation

- Partial models
 - Compact size
 - Focused (limited) knowledge about the system dynamics
 - Easier to learn

Outline

- Planning framework
 - Partial model
 - State-variable hierarchy
 - Partial model planning (PMP)
- Learning partial models
- Empirical evaluation

Planning Framework

- Deterministic factored state space
 - $S = \text{Total state space} = D(v_1) \times \overline{\ldots \times D(v_n)}$
- Partial action model
 - Set of rules = $\{r = op : pre \rightarrow post\}$
 - Relevant variables $\rho(r)$ = variables that are checked = variables that are changed
 - Example
 - $r = North: *0* \rightarrow *1*$
 - $\bullet \ \rho(r) = \{v_2\}$

Partial Model

- Given ordering Ω on variables $(i < j \Leftrightarrow v_i \prec v_j)$
 - Primary variable $\psi(\mathbf{r}, \Omega)$ = first variable in $\rho(r)$
 - Secondary variables = $\rho(r) \psi(r, \Omega)$
 - r.op has no effect on any variable preceding $\psi(r, \Omega)$
- Projection of a rule r(v) = (pre[v], post[v])
- Component graph (CG) for a variable

$$G_v = (D(v), \{r(v) : v = \psi(r, \Omega)\})$$

• Partial model (PM) = $\{(G_v, R_v)\}$

Hierarchy of variables

• The ordering is a "hierarchy" over variables

Definitions

- A partial model is **adequate** iff there exists an ordering such that all CGs are strongly connected
- A domain is **serializable** iff there exists an ordering such every variable can be set to its desired value without affecting precursors

Statement of Partial Model Planning

- If a domain has an adequate partial model then
 - S is strongly connected via the operators in the PM
 - The domain is serializable
- This follows because every CG
 - Is strongly connected
 - Only affects the associated variable and successors

Taxi Domain

Actions:

- North, South, East, West
- Pickup
- Dropoff

Taxi Domain CGs

taxi.x, taxi.y

Taxi Domain CGs

taxi.x

Taxi Domain CGs

Partial Model Planning

Start state: 3 0 3 Goal state: * * 1

Partial Model Planning

Start state: 3 0 3 Goal state: * * 1

Partial Model Planning

Start state: 3 0 * Goal state: 0 * *

taxi.x

Planning Algorithm

Start state: * 0 *

Goal state: * 2 *

taxi.y

Notions Of Optimality

- Parameters:
 - $D = \max_{v} D(v)$
 - $b = \max_r |\rho(r)| 1$
 - d = depth of variable hierarchy
 - $k = \max \text{ number of rules on an edge}$
- Global optimality: $O(D^n)$
- Hierarchical optimality: $O((Dbk)^n)$
 - Pick best rule to minimize pre and post cost
- Recursive optimality: $O((Dbk)^d)$
 - Pick best rule to minimize pre cost
- Agnostic(?) optimality: $O((Db)^d)$
 - Pick an arbitrary rule on the shortest path
 - Assumes all pre costs are equivalent

Learning Partial Models

- $R \leftarrow \emptyset$
- While T
 - Pick a transition (s,a,r,s') such that $s \neq s'$
 - Let $r = a : s \rightarrow s'$
 - Initialize $\rho = \{v : r.pre[v] \neq r.post[v]\}$
 - $\rho = \text{LearnContext}(\{(s, a, r, s')\}, r, \rho)$
 - For $v \notin \rho$, $r.pre[v] \leftarrow r.post[v] \leftarrow *$
 - $R \leftarrow R \cup \{r\}$
 - $T \leftarrow T \{(s, a, r, s') \text{ consistent with } r\}$

022

East

1 2 2

West

022

South

0 1 2

West

0 1 2

```
022
```

East

1 2 2

West

022

South

0 1 2

West

0 1 2

 $r = \text{East: } 0 * * \rightarrow 1 * *$

```
022
```

East

1 2 2

West

022

South

0 1 2

East

0 1 2

 $r = \text{East: } 0 * * \to 1 * *$

022

East

1 2 2

West

022

South

012

East

0 1 2

 $r = \text{East: } 0.2 * \rightarrow 1.2 *$

122

West

022

South

0 1 2

East

0 1 2

 $r = \text{East: } 0.2 * \rightarrow 1.2 *$

Inducing Component Graphs

- While Ω does not contain all variables
 - For $r \in R$
 - $v \in \rho(r) \{u : u \text{ in } \Omega\}$ // Assuming a single variable
 - Insert edge (r.pre[v], r.post[v]) in G_v
 - For $v:v \notin \Omega \wedge G_v$
 - If G_v is strongly connected, append v to Ω
 - Delete all malformed component graphs

Empirical Evaluation

- Compare against VISA (Jonsson & Barto, 06)
 - Learns an exit-option hierarchy from fully specified DBN models
 - Does intra-option Q learning
- Domains
 - Regular Taxi domain
 - Modified Taxi domain
 - Pickup when pass.loc = T causes taxi.y++

Empirical Evaluation: Regular Taxi

Empirical Evaluation: Modified Taxi

Results

- PMP learns the appropriate variable ordering and an adequate model in ~8 episodes
- Recursive optimality coincides with global optimality in the Taxi domain
- VISA induces tight structure in Regular Taxi but only the shallowest hierarchy for Modified Taxi
 - Entire causal graph is strongly connected
- PMP's partial model stays unchanged

Conclusion

- Partial models can be learned from random trajectories
- PMP can be made exponential in d even when VISA and factored planning are exponential in n
- Future work
 - Bounding PMP's plan length vs. optimal
 - Generalizing factors to sets of variables
 - Easing the requirement of strong connectedness