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Motivation

o Partial models
= Compact size

= Focused (limited) knowledge about the system
dynamics

= Hasier to learn




Outline

« Planning framework
= Partial model

= State-variable hierarchy
= Partial model planning (PMP)

» Learning partial models

» Empirical evaluation




Planning Framework

» Deterministic factored state space
= S = Total state space = D(v;) x ... x D(v,)

e Partial action model
= Set of rules = {r = op : pre — post}
= Relevant variables p(r) = variables that are checked
= variables that are changed
= Example
e 7 =North: *0* — * 1 *

* P(r) = )




Partial Model

Given ordering € on variables (2 < ) < v, < vj)

= Primary variable {(r, ) = first variable in p(7)
= Secondary variables = p(r) — {(r, Q)

= 7.0p has no effect on any variable preceding $(r, )

Projection of a rule r(v) = (pre|v|, post|v])

Component graph (CG) for a variable
G, = (D(v), {r(v) : v ="4(r, )})
Partial model (PM) = {(G,, R)}




Hierarchy of variables

e The ordering 1s a “hierarchy” over variables




Definitions

» A partial model 1s adequate 1ff there exists an
ordering such that all CGs are strongly
connected

» A domain is serializable iff there exists an
ordering such every variable can be set to its

desired value without affecting precursors




Statement of Partial Model Planning

 If a domain has an adequate partial model then
= S is strongly connected via the operators in the PM
= The domain is serializable

 This follows because every CG
= Is strongly connected

= Only affects the associated variable and successors




Taxi Domain

Actions:

e North, South, East, West
e Pickup
e Dropoff




Taxi Domain CGs

taxi.z, taxi.y

pass.loc




Taxi Domain CGs

taxi.x




Taxi Domain CGs

02* > 12%
:03*—>13%*
04*—>14%*

:12*—>02%*
:13*—>03%*
:14*—>04%*




Partial Model Planning

Start state; 3 0 3 Goal state: * * 1




Partial Model Planning

Start state; 3 0 3 Goal state: * * 1
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Partial Model Planning

Start state: 3 0 * Goal state: 0 * *




Planning Algorithm

Start state: * 0 * Goal state: * 2 *

taxi.y




Notions Of Optimality

Parameters:
D = max, D(v)
b = max, |p(r)| -1
d = depth of variable hierarchy

k = max number of rules on an edge
Global optimality: O(D")
Hierarchical optimality: O((Dbk)")

Pick best rule to minimize pre and post cost
Recursive optimality: O((Dbk)?)

Pick best rule to minimize pre cost
Agnostic(?) optimality: O((Db)9)

Pick an arbitrary rule on the shortest path

= Assumes all pre costs are equivalent




Learning Partial Models

T = {(s,a,r,s)}

|

Induce
compressed
rule set

Induce component graphs
(and variable ordering)

|




Inducing Compressed Rule Set

e R—J
o While T’

« Pick a transition (s,a,r,s’) such that s # &’
» letr=a:s —> s

= Initialize p = {v : r.pre[v| # r.post|v|}

« p = LearnContext({(s,a,r,s’ )}, r, p)

= For v ¢ p, r.pre|v] « r.post|v| « *

= R— R U {r}

« T—T-{(s,a,r,s’) consistent with r}




Inducing Compressed Rule Set




Inducing Compressed Rule Set

r=East: 0** —>1x**




Inducing Compressed Rule Set

r = Bast: 0 % * — 1 % *




Inducing Compressed Rule Set

r=FKHast:02* —>12*




Inducing Compressed Rule Set

r=FKHast:02* —>12*




Inducing Component Graphs

e While €2 does not contain all variables
« Forre R

e vepr)—{u:uin Q} // Assuming a single variable
o Insert edge (7.pre|v], r.post|v]) in G,

« Forv:ve QAG,
» If G, 1s strongly connected, append v to €2

= Delete all malformed component graphs




Empirical Evaluation

e Compare against VISA (Jonsson & Barto, 06)

= Learns an exit-option hierarchy from fully specified
DBN models

= Does intra-option Q) learning
e Domains

= Regular Taxi domain
= Modified Taxi domain

o Pickup when pass.loc = T causes taxt.y++




Empirical Evaluation: Regular Taxi
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Empirical Evaluation: Modified Taxi
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Results

PMP learns the appropriate variable ordering
and an adequate model in ~8 episodes

Recursive optimality coincides with global

optimality in the Taxi domain

VISA induces tight structure in Regular Tax1 but
only the shallowest hierarchy for Modified Taxi

= Entire causal graph is strongly connected

PMP’s partial model stays unchanged




Conclusion

o Partial models can be learned from random
trajectories

o PMP can be made exponential in d even when

VISA and factored planning are exponential in n

e Future work
« Bounding PMP’s plan length vs. optimal
= Generalizing factors to sets of variables

= Fasing the requirement of strong connectedness




